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ACTIVE CONSTRAINED LAYER DAMPING OF
THIN CYLINDRICAL SHELLS
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The e!ectiveness of the active constrained layer damping (ACLD) treatments in enhancing
the damping characteristics of thin cylindrical shells is presented. A finite element model
(FEM) is developed to describe the dynamic interaction between the shells and the ACLD
treatments. Experiments are performed to verify the numerical predictions. The obtained
results suggest the potential of the ACLD treatments in controlling the vibration of
cylindrical shells which constitute the major building block of many critical structures such
as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.
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1. INTRODUCTION

Considerable attention has been devoted to control the vibration of cylindrical shells using
either passive or active control means. For example, Markus [1, 2] used unconstrained
passive damping layer treatments to suppress the axisymmetric vibrations of thin
cylindrical shells. However, for higher damping characteristics, the passive constrained
layer damping (PCLD) treatments have been successfully employed on various types of
cylindrical shells [3}9]. Recently, several attempts have been made to actively control the
vibration of shells using discrete piezoelectric actuators [10}15] bonded to the shell
surfaces or distributed piezoelectric actuators embedded in the composite fabric of the
shell [16].

In all the above studies, the emphasis is placed on using separately the passive or the
active vibration control actions. In the present study, the passive and active control
strategies are combined to operate in unison to achieve an optimal balance between the
simplicity of the passive damping and the e$ciency of the active control. A preferred
con"guration is the active constrained layer damping (ACLD) treatment which has been
successfully used as an e!ective means for damping the vibration of beams and plates
[17}26]. The ACLD treatment has also been used to control the axisymmetric modes of
vibration of cylindrical shells using a boundary control strategy [27].

In this paper, the focus is placed on extending the use of the ACLD treatments to control
the vibration of thin cylindrical shells undergoing three-dimensional deformations.
Particular emphasis is placed on developing a "nite element model to describe the
vibrations of shells which are partially treated with ACLD treatments. First order shear
deformation theory is used to formulate a "nite element model. Experiments are conducted
to compare the numerical predictions of the "nite element model. The model is also veri"ed
for untreated shells with existing authenticated results.

This paper is organized in "ve sections. In section 1, a brief introduction is given. In
section 2, the concept of the active constrained layer damping is presented. The "nite
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922 M. C. RAY E¹ A¸.
element model of the shell/ACLD system is developed in section 3. In section 4, the
performance of the shell/ACLD is presented for a simple derivative controller in
comparison to that of conventional constrained layer damping. Section 5 gives a brief
summary of the conclusions.

2. CONCEPT OF THE ACTIVE CONSTRAINED LAYER DAMPING

The ACLD treatment consists of a conventional passive constrained layer damping
which is augmented with e$cient active control means to control the strain of the
constraining layer, in response to the shell vibrations as shown in Figure 1. The shear
deformation of the visco-elastic damping layer is controlled by an active piezoelectric
constraining layer which is energized by a control voltage. In this manner, the ACLD when
bonded to the shell acts as a smart constraining layer damping treatment with built-in
actuation capabilities. With appropriate strain control, through proper manipulation of
control voltage, one or more of the structural modes of vibration can be targeted and
damped out.

Also, the ACLD provides a practical means for controlling the vibration of massive
structures with the currently available piezoelectric actuators without the need for
excessively large actuation voltages. This is due to the fact that the ACLD properly utilizes
the piezoelectric actuator to control the shear in the soft visco-elastic core which is a
task compatible with the low control authority capabilities of the currently available
piezoelectric materials.

3. FINITE ELEMENT MODELLING

3.1. SHELL/ACLD CONFIGURATION

Figure 2 shows the transverse cross-section of a thin cylindrical shell treated partially
with active constrained layer damping treatments. The shell has the longitudinal
length a, the average circumferential length b, the average radius R and the thickness h.
The thicknesses of the visco-elastic core and the piezoelectric actuator are h

c
and

h
p

respectively.
Figure 1. Schematic diagram of the shell/ACLD system.



Figure 2. (a) Geometrical and (b) kinematical parameters of the shell/ACLD system.
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3.2. DISPLACEMENT FIELDS

In case of constrained layer damping analysis, the layerwise theories have continuously
been used. For sandwiched or laminated structures, the use of the layerwise theories
involves a larger number of generalized displacement variables than a single "rst order
shear deformation theory needs. This results in a large number of global degrees of freedom
in case of "nite element analysis which eventually turns out to be less cost e!ective.

Hence, as the present study is concerned with thin shells, the longitudinal and
circumferential deformations u and v, respectively, at any point of the shell/ACLD system
are represented by the "rst order shear deformation theory (FSDT) as follows:

u(x, y, z, t)"u
0
(x, y, t)#zh

x
(x, y, t), v(x, y, z, t)"v

0
(x, y, t)#zh

y
(x, y, t), (1)

in which x and y are the longitudinal and circumferential co-ordinates, respectively, z is the
radial co-ordinate, u

0
and v

0
are the generalized displacements at any point of the reference

plane (z"0), and h
x
, h

y
are the rotations of the normal to the reference plane about the y-

and x-axis respectively. According to the FSDT the radial displacement, w is assumed to be
constant through the thicknesses of the cylinder, the visco-elastic core and the piezoelectric
actuator.

The generalized displacement variables are separated into translational Md
t
NT and

rotational variables Md
r
NT:

Md
t
N"[u

0
v
0

w]T, Md
r
N"[h

x
h
y
]T. (2)

3.3. STRAIN}DISPLACEMENT RELATIONS

Applying Donnell's theory [28] for strain}displacement relations and using equation (1),
the strain vector at any point of the shell/ACLD system can be expressed as

MeN"[Z
1
]Me

t
N#[Z

2
]Me

r
N, (3a)
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where the generalized strain vectors Me
t
N, Me

r
N are given by
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(3b)

and the transformation matrices [Z
1
] and [Z

2
] are given in Appendix A.

3.4. CONSTITUTIVE EQUATIONS

The constitutive equation for the material of the piezoelectric constraining layer is

Mp3N"[C3][Me3N!Me
p
N], (4)

where MpN represents the stress vector, [C] is the elastic constant matrix, the superscript
3 denotes the piezoelectric layer number 3 and the piezoelectrically induced-strain vector
Me

p
N for a biaxially polarized actuator layer is given by

Me
p
N"MeN

p
N <, (5)

with

MeN
p
N"

1

h
p

[d
31

d
32

0 0 0]T,

d
31

, d
32

denoting the piezoelectric strain constants, and < the applied voltage.
The constitutive equations for the materials of the shell and the visco-elastic core are

given by

MpLN"[CL]MeLN M¸"1, 2N, (6)

wherein the superscripts 1 and 2 identify the shell and the visco-elastic core respectively.

3.5. SYSTEM ENERGIES

The potential energy ¹
p

of the overall system is given by

¹
p
"

1

2

3
+

L/1
P
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P

b

0
P

a

0
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0
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MDNT
z/h1

f s dx dy (7)

and the kinetic energy ¹
k
is given by

¹
k
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P
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0
P

a

0

oLMDQ LNTMDQ LN dx dy dz (8)

in which o with superscript ¸ is the mass density of the ¸th layer, MDN is the vector of
absolute displacements (u, v, w) and M f sN is the vector of surface traction.
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The whole continuum is discretized by an eight-noded two-dimensional isoparametric
element. The generalized displacement vectors for the ith (i"1, 2,2, 8) node of the element
is then given by

Md
ti
N"[u

0i
v
0i

w]T, Md
ri
N"[h

xi
h
yi
]T (9)

and the generalized displacement vector at any point within the element is given by
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wherein Mde
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, with I
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and I

r
being

the identity matrices of appropriate dimension and n
i
are the shape functions of natural

co-ordinates.
Using relations (2), (3b), (9) and (10), the generalized strain vectors at any point within the

element can be expressed as
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t
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N (11)

in which the nodal strain}displacement matrices are given by [B
t
]"[B

t1
B
t22

B
t8
] and
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r
]"[B

r1
B

r22
B
r8

]. The various submatrices B
ti

and B
ri

are given in Appendix A.
Finally, using equations (3a), (4)} (6), and (11) in equations (7) and (8) the strain energy of

the eth typical shell element augmented with ACLD treatment can be expressed as
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and the kinetic energy of the element can be obtained as
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in which ae and be are the longitudinal and circumferential lengths of the element
respectively. The various rigidity matrices [D

tt
], [D

tr
], [D

rt
] and [D

rr
] appearing in equation

(12) are given in Appendix B. Since the present study is dealt with the thin-shell analysis the
rotational inertia of the element has been neglected when estimating the kinetic energy of
the element.

3.6. EQUATIONS OF MOTION

Applying Hamilton's variational principle the following equations of motion for the
element are obtained:

[Me]Md$ e
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and

[Ke
rt
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in which the various elemental matrices [Me], [Ke
tt
], [Ke

tr
], [Ke

rt
] and [Ke

rr
], the electro}

elastic coupling vectors MFe
at
N, MFe

ar
N and the excitation force vectors MFe

t
N, MFe

r
N are de"ned in

Appendix B. It may be mentioned here that in case of an element without ACLD treatment,
the electro}elastic coupling vectors MFe

at
N and MFe

ar
N do not appear in equations (14) and (15).

The elemental equations are assembled in such a manner as to obtain the global
equations of motion so that each actuator can be activated separately as follows:
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where [M] and [K
tt
], [K

tr
], [K

rr
] are the global mass and sti!ness matrices; MX

t
N, MX

r
N are

the global nodal generalized displacement co-ordinates; MF
t
N, MF

r
N are the global nodal force

vectors corresponding to translational and rotational co-ordinates; n is the number of
ACLD patches and for the jth ACLD patch the global nodal electro}elastic coupling
vectors are given by

MFj
at
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m

MFe
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N and MFj
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N"+

m

MFe
ar
N, (17)

with m being the number of elements per ACLD treatment. Invoking the boundary
conditions, the global rotational degrees of freedom can be condensed to obtain the global
equations of motion in terms of the global translational degrees of freedom only as follows:
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tt
]![K

tr
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r
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3.7. CONTROL LAW

In the active control strategy, each actuator is supplied with the control voltage
proportional to the radial velocity at the points on the outer surface of the cylinder which
correspond to mid-points of the free width of the ACLD patches. Thus, the control voltage
for the jth actuator can be expressed in terms of the derivatives of the nodal global degrees
of freedom as

<j"!Kj
d
[ej]MXQ

t
N, (19)

where Kj
d

is the controller gain and [ej] is a unit vector with unity as the only non-zero
element corresponding to that global degree of freedom, the derivative of which is fed back
to the actuator.
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Substitution of equations (19) into equation (18) yields the "nal damped equations of
motion as

[M]MX$
t
N#[K*]MX

t
N#[C

d
]MXQ

t
N"MFN, (20)

where
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Equation (20) can be formulated to compute the frequency response function (FRF) when
the shell/ACLD system is subjected to harmonic excitations using the mechanical
impedance approach of Douglas and Yang [29].

4. PERFORMANCE OF SHELL WITH ACLD AND PCLD TREATMENTS

In this section, the performance of shells treated with two ACLD and PCLD patches is
evaluated by comparing their frequency response functions (FRF) using the "nite element
model developed in section 3. The numerical results are compared with experimental
results.

4.1. MATERIALS

The shell considered in this study is made of stainless-steel shell which has Young's
modulus E

1
"210 GN/m2, the Poisson ratio l

1
"0)3 and density o1"7800 kg/m3.

The material of the acrylic-based visco-elastic core has a complex shear modulus
G

2
"20 (1#1)0i) MN/m2 and density o2"1140 kg/m3. The piezoelectric actuator is an

active polymeric "lm (PVDF). Its Young's modulus E
3
, the Poisson ratio l

3
and density

o3 are 2)25 GN/m2, 0)28 and 1800 kg/m3 respectively. Also, the values of the piezoelectric
strain constants d

31
and d

32
are 23]10~12 and 3]10~12 m/V respectively.

4.2. NUMERICAL AND EXPERIMENTAL RESULTS

The "nite element model is "rst veri"ed for untreated shells. The natural frequencies of
the untreated clamped}free cylindrical shells obtained by this model are compared with
those obtained by Leissa [27] and are presented in Table 1. The results are in good
agreement with Leissa's result. Next, a clamped}free cylinder with R"0)1016 m,
a"1)27 m and h"0)635 mm is chosen to demonstrate the performance the ACLD/PCLD
treatments. Experiments are conducted using this cylinder. The arrangement of
experimental set-up is schematically described in Figure 1. Two patches of ACLD treatment
are used which are bonded 1803 apart on the inner surface of the cylinder as shown in
Figure 3. The length and width of each patch are 0)508 and 0)1016 m respectively. The shell
is excited with swept sinusoidal excitations at its free end by the speaker. The output of two
collocated accelerometers, placed at the locations as described in section 3.7, is sent to phase
shifters and then to power ampli"ers. The output of the ampli"ers is used to activate the
piezo-constraining layers. The velocity feedback is ensured by properly adjusting the phases
of the phase shifters.

The natural frequencies of the cylinder are computed using the FE model and are
also experimentally determined. Table 2 shows a comparison between the theoretical



TABLE 1

Natural frequency parameters uR Jo1(1!l2
1
)/E

1
]102

for clamped}free untreated shells with R/h"100 and
h"2 mm

a/R Mode (1,1) Mode (1,2)

10 2)2430 1)1138
2)2041s 1)1094s

15 1)0394 0)8573
1)0993s 0)8533s

20 0)8393 0)5983
0)8013s 0)6198s

sReference [28].

Figure 3. Cross-section of the shell/ACLD system.

TABLE 2

Comparison of natural frequencies (Hz) of the shell/AC¸D
system

Mode FEM Experiment

(1,2) 54)06 51)2
(1,1) 113)62 113

928 M. C. RAY E¹ A¸.
predictions and the experimental results. Numerical estimations are slightly higher
than the experimental values. This can be attributed to the fact that the clamped end is
not ideal and geometrical imperfections are inherent due to the manufacturing process of
the cylinder.



Figure 4. FRF of the shell/ACLD system when both the piezoelectric layers are active. (a) Numerical results:
, PCLD; , Kj

d
"5]105; , 9]105. (b) Experimental results: , PCLD; , Kj

d
"5]105; , 9]105.
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Figures 4(a) and 4(b) display the numerically and experimentally determined FRFs of the
shell/ACLD system at the free end of the cylinder (a, 0, h/2) respectively. Displayed in the
"gures are the amplitudes of radial displacements when the piezoelectric constraining layers
in both the patches are passive and active with di!erent control gains. These "gures clearly
reveal that the ACLD treatments signi"cantly improve the damping characteristics of the
shell over the PCLD. A comparison between these two "gures shows that maximum values
of the uncontrolled radial displacement of the shell obtained numerically at the point
(a, 0, h/2), considered here match with that obtained experimentally with close accuracy.
The controlled responses indicate that the attenuated amplitudes for the "rst mode (1,2) of
vibration di!er negligibly. In case of the second mode (1,1) the numerical predictions are
slightly lower than the experimental results. The numerical predictions of the maximum



TABLE 3

Maximum control voltage

One actuator One actuator Two actuators Two actuators
Mode gain"3)5]105 gain"8]105 gain"5]105 gain"9]105

(1,2) FEM 82 100 49)01 61)23
Experiment 70 80 47)82 64)00

(1,1) FEM 50 70 34)6 40)00
Experiment 64 84 20)2 26)00

Figure 5. Experimental results using laser vibrometer before and after control for mode (1, 2): (a) PCLD,
(b) ACLD (one actuator), (c) ACLD (two actuators).

930 M. C. RAY E¹ A¸.



Figure 6. Experimental results using laser vibrometer before and after control for mode (1, 1): (a) PCLD,
(b) ACLD (one actuator), (c) ACLD (two actuators).
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voltages required to control the mode (1,2) match closely with the experimental results as
presented in Table 3. However, the numerical predictions for the control voltages for the
mode (1,1) are higher than those obtained experimentally. In order to identify the modes
and the modal contents after the control, the surface of the cylinder is scanned using laser
vibrometer as shown in Figures 5 and 6 for modes (1,2) and (1,1) respectively. It is clear from
these "gures that signi"cant attenuation is obtained with the activation of the controller.

Figures 7(a) and 7(b) illustrate the numerical and experimental results for the case when
only one of the piezoelectric constraining layer is active. In this case also, the numerical
predictions matched well with the experimental results. However, numerical predictions for
the control voltages di!er from the experimental results but are within the acceptable limit
as shown in Table 3.



Figure 7. FRF of the shell/ACLD system when one of the piezoelectric layers is active. (a) Numerical results:
, PCLD; , Kj

d
"3)5]105; , 8]105. (b) Experimental results: , PCLD; , Kj

d
"3)5]105;

, 8]105.
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5. CONCLUSIONS

The e!ectiveness of the active constrained layer damping (ACLD) in controlling the
vibration of thin cylindrical shells has been demonstrated theoretically and experimentally in
this paper. A "nite element model is developed to describe the dynamics and control
phenomena associated with shell/ACLD systems. The model is based on Donnell's theory of
shells. Eight-noded two-dimensional iso-parametric elements are used to discretize the whole
continuum. The validity of the model is checked for untreated shells using data available in
the literature. For treated shells, the validity of the model is checked with experiment.
Numerical results are observed to match with good accuracy. Signi"cant attenuation is
obtained with relatively less control voltage when the two actuators are activated.
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Work is now in progress to use the ACLD to control the sound radiation into the interior
of the shell with appropriate modi"cations of the "nite element model to account for the
structure}#uid interactions. Also, work is in progress to utilize the ACLD to control the
sound radiation to the exterior of shells with #uid loading.

ACKNOWLEDGMENTS

This work is funded by the U.S. Army Research O$ce (AASERT Grant Number
DAAH-04-94-G-0163). Special thanks are due to Dr. Gary Anderson, the technical
monitor, for his invaluable technical inputs.

REFERENCES

1. S. MARKUS 1976 Journal of Sound and <ibration 48, 511}524. Damping properties of layered
cylindrical shells vibrating in axially symmetric modes.

2. S. MARKUS 1979 Journal of Mechanical Engineering Science 21, 33}37. Re"ned theory of damped
axisymmetric vibration of double-layered cylindrical shells.

3. I. W. JONES and V. L. SALERNO 1966 ¹ransactions of the American Society of Mechanical
Engineers, Journal of Engineering for Industry, 88, 318}324. The e!ect of structural damping on the
forced vibration of cylindrical sandwich shells.

4. H. H. PAN 1969 Journal of Sound and <ibration 9, 338}348. Axisymmetric vibrations of a circular
sandwich shell with a visco-elastic core layer.

5. Y. P. LU, B. E. DOUGLAS and E. V. THOMAS 1973 American Institute of Aeronautics and
Astronautics Journal 11. Mechanical impedance of damped three-layered sandwich rings.

6. R. A. DITARANTO 1972 ¹he Journal of the Acoustical Society of America 53, 748}757. Free and
forced response of a laminated ring.

7. W. LEISSA and K. M. IYER 1981 Journal of Sound and <ibration 77, 1}10. Modal response of
circular cylindrical shells with structural damping.

8. N. ALAM and N. T. ASNANI 1984 American Institute of Aeronautics and Astronautics Journal 22,
803}810. Vibration and damping analysis of a multi-layered cylindrical shell, Part I: theoretical
analysis.

9. N. ALAM and N. T. ASNANI 1984 American Institute of Aeronautics and Astronautics Journal 22,
975}981. Vibration and damping analysis of a multi-layered cylindrical shell, Part II: numerical
results.

10. R. L. FORWARD 1981 Journal of Spacecraft 18, 11}17. Electronic damping of orthogonal bending
modes in a cylindrical mast experiment.

11. HAROLD, C. LESTER and S. LEFEBVRE 1993 Journal of Intelligent Material System and Structures
4, 295}306. Piezoelectric actuator model for active sound and vibration control cylinders.

12. S. ZHOU, C. LIANG and C. A. ROGERS 1993 Adaptive Structures and Material Systems ASME 35,
247}255. Impedance modeling of two-dimensional piezoelectric actuators bonded on a cylinder.

13. H. T. BANKS, R. C. SMITH and Y. WANG 1995 Quarterly of Applied Mathematics 2, 353}381. The
modeling of piezoceramic patch interactions with shells, plates, and beams.

14. Z. CHAUDHRY, F. LALANDE and C. A. ROGERS 1994 Proceedings of the SPIE Conference on Smart
Structures, <ol. 2190, 563}570. Special considerations in the modeling of induced strain actuator
patches bonded to shell structures.

15. V. R. SONTI and J. D. JONES 1996 American Institute of Aeronautics and Astronautics Journal 34,
1034}1040. Curved piezo-actuator model for active vibration control of cylindrical shells.

16. H. S. TZOU 1993 Piezoelectric Shells: Distributed Sensing and Control of Continua. Dordrecht, The
Netherlands: Kluwer Academic Publishers.

17. A. BAZ 1996 ;.S. Patent 5,485,053. Active constrained layer damping.
18. A. BAZ and J. RO 1996 Journal of Smart Materials and Structures 5, 272}280. Vibration control of

plates with active constrained layer damping.
19. A. BAZ and J. RO 1995 American Society of Mechanical Engineers Journal of <ibration and

Acoustics 117B, 135}145. Optimum design and control of active constrained layer damping.



934 M. C. RAY E¹ A¸.
20. G. S. AGNES and K. NAPOLITANO 1993 Proceedings of 34th SDM Conference, 3499}3506. Active
constrained layer viscoelastic damping.

21. B. AZVINE, G. TOMLINSON and R. WYNNE 1994 Proceedings of Smart Structures and Materials
Conference on Passive Damping, Orlando, F¸, <ol. 2193, 138}149. Initial studies into the use of
active constrained-layer damping for controlling resonant vibrations.

22. D. EDBERG and A. BICOS 1992 Conference on Active Materials and Adaptive Structures, 377}382.
Bristol, U.K.: IOP Publishing Ltd. Design and development of passive and active damping
concept for adaptive structures.

23. J. PLUMP and J. E. HUBBARD 1986 Proceedings of the ¹welth International Congress on Acoustics,
Paper d401, ¹oronto, Canada. Modeling of an active constrained layer damper.

24. I. Y. SHEN 1994 American Society of Mechanical Engineers Journal of <ibration and Acoustic 116,
341}348. Hybrid damping through intelligent constrained layer treatments.

25. VAN NOSTRAND, W. G. KNOWIES and D. INMAN 1994 Proceedings of Smart Structures and
Materials Conference on Passive Damping, 2193, 126}137. Finite element modeling for active
constrained-layer damping.

26. M. C. RAY and A. BAZ 1997 Journal of Sound <ibration 208, 391}406. Optimization of energy
dissipation of active constrained layer damping treatments of plates.

27. A. BAZ and T. CHEN 1997 AIAA Paper d 97-0360, Proceedings of the 35th AIAA Aerospace
Sciences Conference, Reno, Nevada. Boundary control of axi-symmetric vibrations of cylindrical
shell using active constrained layer damping.

28. A. W. LEISSA 1973 NASA-SP-288. Vibrations of shells.
29. B. E. DOUGLAS and J. C. YANG 1978 American Institute of Aeronautics and Astronautics Journal

16, 925}930. Transverse compressional damping in the vibratory response of elastic}viscoelastic}
elastic beams.

APPENDIX A: FORMS OF MATRICES [Z
1
], [Z

2
], [B

ti
] AND [B

ri
]

A.1. TRANSFORMATION MATRICES, [Z
1
] AND [Z

2
]

The explicit forms of the transformation matrices, [Z
1
] and [Z

2
], appearing in equation

(3) are

[Z
1
]"

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

and [Z
2
]"

z 0 0 0 0

0 z 0 0 0

0 0 z 0 0

0 0 0 1 0

0 0 0 0 1!
z

R

.

A.2. SUBMATRICES, [B
ti
] AND [B

ri
]

The submatrices, [B
ti
] and [B

ri
] (i"1, 2,2, 8), of the nodal strain}displacement

matrices, [B
t
] and [B

r
], respectively, in equation (11) are obtained as

[B
ti
]"

n
i,x

0 0

0 n
i,y

1

R
n
i,y

n
i,x

0

0 0 n
i,x

0 !

1

R
n
i,y

and [B
ri
]"

n
i,x

0

0 n
i,y

n
i,y

n
i,x

1 0

0 1

,
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where

n
i,x
"

Ln
i

Lx
and n

i,y
"

Ln
i

Ly
.

APPENDIX B: RIGIDITY AND ELEMENTAL MATRICES

B.1. RIGIDITY MATRICES

The various rigidity matrices [D
tt
], [D

tr
], [D

rt
] and [D

rr
] appearing in equation (12) are

de"ned as

[D
tt
]"

3
+

L/1
P

hL

hL`1

[Z
1
]T[CL][Z

1
] dz, [D

tr
]"

3
+

L/1
P

hL

hL`1

[Z
1
]T[CL][Z

2
] dz,

[D
rt
]"[D

tr
]T

and

[D
rr
]"

3
+

L/1
P

hL

hL`1

[Z
2
]T[CL][Z

2
] dz.

B.2. ELEMENTAL MATRICES

In equations (14) and (15), the elemental mass matrix [Me] and the elemental sti!ness
matrices [Ke

tt
], [Ke

tr
], [Ke

rt
] and [Ke

rr
] are de"ned as

[Me]"
1

2 P
ae

0
P

be

0

(o1h#o2h
c
#o3h

p
)[N

t
]T[N

t
] dx dy,

[Ke
tt
]"

1

2 P
ae

0
P

be

0

[B
t
]T[D

tt
][B

t
] dx dy, [Ke

tr
]"

1

2 P
ae

0
P

be

0

[B
t
]T[D

tr
][B

r
] dx dy,

[Ke
rt
]"[Ke

tr
]T

and

[Ke
rr
]"

1

2 P
ae

0
P

be

0

[B
r
]T[D

rr
][B

r
] dx dy.

The elemental electro}elastic coupling vectors MFe
at
N and MFe

ar
N as well as the elemental

exciting force vectors MFe
t
N and MFe

r
N appearing in equations (14) and (15) are de"ned as

MFe
at
N"

1

2 P
h3

h4
P

ae

0
P

be

0

[B
t
]T[Z

1
]T[C3]MeN

p
N dx dy,

MFe
ar
N"

1

2 P
h3

h4
P

ae

0
P

be

0

[B
r
]T[Z

2
]T[C3]MeN

p
N dx dy, MFe

t
N"P

ae

0
P

be

0

[N
t
]TM f sN dx dy

and

MFe
r
N"P

ae

0
P

be

0

[N
r
]TM f sN dx dy.
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